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A comparison of laboratory experiments in a shallow-water tank driven by an 
oscillating piston and numerical solutions of the Korteweg4eVries (KdV) 
equation show that the latter can accurately describe slightly dissipative wave- 
propagation for Ursell numbers (h,L2/h$ up to 800. This is an input-output 
experiment, where the initial condition for the KdV equation is obtained from 
upstream (station 1) data. At a downstream location, the number of crests and 
troughs and their phases (or relative locations within a period) agree quantita- 
tively with numerical solutions. The crest-to-trough amplitudes disagree 
somewhat, as they are more sensitive to dissipative forces. This work firmly 
establishes the soliton concept as necessary for treating the propagation of 
shallow-water waves of moderate amplitude in a low-dissipation environment. 

1. Introduction 
The KdV equation (1895), 

h, + hhs + S2hs,, = 0, 

was first derived as an asymptotic description of small-but-finite (i.e. laminar) 
shallow-water waves, where nonlinear and dispersive wave effects compete, 
and dissipative effects can be neglected. In  recent years, the KdV equation has 
been derived as an essential model equation for a class of nonlinear dispersive or 
loss-less waves, including magnetohydrodynamics (Gardner & Morikawa 1960), 
the ion-acoustic plasma (Washimi & Taniuti 1966), and the ‘anharmonic’ or 
nonlinear lattice (Zabusky 1967). Generally, a large class of nearly hyperbolic 
mathematical systems reduce to the KdV equation (Su & Gardner 1969; Tappert 
& Tang 1969), when one formally assumes small-but-finite amplitude waves 
propagating in only one characteristic direction (the appropriate conditions for 
this circumstance to occur have been given by Tappert & Tang 1969). 

With digital computers capable of solving (1.1) in relevant physical situations, 
we can now ‘close the loop’ of reasoning between asymptotic analysis and 
experimental reality. The classic pattern of smooth long waves transforming into 
a train or ‘wavelets’ (sometimes called secondary waves) was discovered com- 
putationally by Zabusky, Kruskal & Deem (Zabusky & Kruskal 1965; Zabusky, 
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Deem & Kruskall965) when they solved (1.1) with periodic boundary conditions. 
These solitary wave-like undulations were designated ‘solitons ’, because they 
are related to the solitary wave on the infinite line or the cnoidal wave for periodic 
solutions of (1. l), and because they are stable entities (like particles) that preserve 
their form through many interactions. Peregrine (1966) solved an equation 
equivalent to (1.1); and Madsen & Mei (1969) solved a more complete set of 
equations in one dimension, and also observed two or more solitons form from a 
single soliton as it propagated into a shallower region (soliton ‘fission ’ on a shelf). 

The existence of solitary waves in shallow water has been known for some time. 
However, the unusual transformations of smooth large amplitude wave-forms in 
shallow water was first observed by Goda, Takeda & Moriya (1967). Multer & 
Galvin (1967) observed these transformations and the unusual interactions of 
primary and secondary waves (solitons). R.Meyer, when viewing the film by 
Zabusky et al. (1965),t observed that the wavelet interactions were similar to 
those obtained by Galvin (1968) in a sinusoidally driven shallow-water wave 
tank. An initial experimental/computational study (Zabusky & Galvin 1968) 
demonstrated that these wavelets are closely related to solutions of the KdV 
equation, and are some form of soliton. Recently, Madsen, Mei & Savage (1970) 
re-examined the Galvin (1968) data, and in the f i s t  part of their work presented a 
qualitative and weakly coupled comparison of the experiments with numerical 
solutions obtained by the complete one-dimensional numerical scheme of Madsen 
& Mei (1969). The essential behaviour of solitons is not elucidated. 

In the last two years the qualitative fissioning into wavelets or solitons and 
soliton interactions has also been observed in several experiments, including 
plasma ion-acoustic waves (Ikezi, Taylor & Baker 1970) and electrical trans- 
mission lines (Hirota & Suzuki 1970). In  another context the KdV equation 
has been shown to be applicable to thermally excited phonon packets in low 
temperature, nonlinear crystal experiments (Tappert & Varma 1970). 

In this paper we establish quantitatively the soliton concept and the validity of 
theKdV equation. Small-but-finite amplitude sinusoidal shallow-water waves are 
launched in a tank, such that the Ursell number varies from 22 to 777. This is an 
input-output comparison and height data are taken a t  two well-separated 
stations. 

In 3 2 and figure 3 we present the dependent variables and normalizations used 
to describe: exact solutions to the complete partial differential equations; raw 
data; smoothed and normalized data; and numerical solutions of the KdV 
equation. These are assembled tersely in appendix B to aid the reader. In  kj 3 we 
describe the experimental configuration, and illustrate how the data from station 
1 (S 1) are processed to set up the initial condition for the numerical KdV solver. 

t Contents as follows. Part 1 : numerical solutions of the KdV equation 

ut+uu,+62u,,, = 0, 

with periodic boundary conditions. Part 2 : interaction of a compressive and a rarefractive 
soliton; solutions of the equation ut + uzu, + 6~uxxx = 0, with periodic boundary con- 
ditions. Part 3 : numerical solutions for an anharmonic lattice initially excited by an intense 
localized pulse. This 16 111111, silent, black-and-white film runs 35 min. Available on loan 
from the Film Library, Bell Telephone Laboratories, Murray Hill, N.J. 07971. 
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In § 4 we compare the numerically computed solutions with the data measured 
at  the downstream station (S 2). 

The advantages of the KdV level of description are its terseness (one easily 
compares the dispersive and nonlinear effects) and its computational and analy- 
tical tractability. Since the linear wave speed has been transformed out of (1.1), 
one can take relatively large computational steps. Furthermore, an exact 
solution of (1.1) has been obtained by Gardner et al. (1967) for the infinite line, 
when an initial state fissions into solitons plus an undular state. The formation 
and interaction of the pure soliton states are also described by the conservation 
laws obtained for (1.1) (Zabusky 1967; Miura, Gardner & Kruskall968; Kruskal 
et al. 1970). 

2. The normalized Korteweg-deVries equation 
Starting with equations for a two-dimensional inviscid, incompressible, 

irrotational fluid in a gravitational field (g), one can derive the first-order dimen- 
sional KdV equation 

(h"),, + (2c$/LX) (h*),* + (3~$/2) [(h* - h$)/hz] (h*),* 

+ (~$h$~/6h&) (h*),*r*s* = 0 (2.1) 

for the motion of the$rst-order approximation of the free surface, h*. The asterisk 
indicates dimensional true values of the variables, and h*(z*,t*) is the exact 
solution of (2.1). (See appendix B for summary of notation and normalizations.) 
Equation (2.1) is valid in the limit 

E* f hTl/h$ < 1 and E* = (h$/L*)2 < 1, (2.2) 

h:, = max,.[h*(x*,t:)-h$], (2-3) 

where h$ is the still-water level, L* is the fundamental period of the wave, 

where h;*, measures the finiteness of amplitude, and where tf is an early time in 
our experiment (e.g. when the wave passes the upstream or S 1 probe as shown in 
figure 1 (a)). The linear wave speed is 

and time normalizations are 
= (Sh$)+, (2.4) 

t$ = h$/c$ = (h$/g)& and T* = L*/c$. (2.5) 

We now assume we are dealing with smoothed measured quantities (subject to 
small measurement and data smoothing errors) and suppress the asterisk. If  we 
transform to a frame of reference moving with the linear wave-speed, co = (gh,)&, 
then (2.1) becomes 

where 
(2-6) K, + &?I, + 8; ~,, = 0, 

(2.7 a-e) 

K = A(& t )  = (h- h,)/hll (note max;K(Z, Zl) = 1.0), 
Z = 3h11t/Lt0 = 3hllt/hoT, 
f = 2(x-c0t)/L, 
Sg = 4/9Ur, = 4hg/9hl,L2 = 4ht/9gh,,T2, 

and UT, = E / E  = hll L2/h$ 
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is the Ursell number, analogous to the Reynolds number for nonlinear dissipative 
systems. Note that there is an ambiguity in defining Ur, or a:, for as (2.3) shows, 
h,, is dependent on t,, and if the wave-form is evolving, h,, will change. 

Below we describe the manner in which the experiment was conducted and 
justify the use of periodic boundary conditions, namely 

h*(x*) = h*(z* +A*) or h(2) = h(2+ 2). (2.8) 

That is, time elapsed in the numerical computation is related to the distance between 
S 1 and a downstream location of the propagating wave. 

3, Experimental configuration 
Experiments were performed in a tank 96ft long and 1.5 ft wide. Waves were 

launched on water at two heights (0.242 ft and 0.493 ft) by an oscillating piston 
upstream and dissipated on a beach, as shown in figure 1 (a). The disturbance of 
the free surface height from the still-water level was measured by fixed resistive 
probes mounted vertically. An upstream probe ( S l )  close to the oscillator 
recorded a nearly sinusoidal signal that was digitized to give A,($), where 2 is 
taken at  discrete temporal intervals. A downstream probe (S 2) also measured an 
undular signal and was digitized to give A,@), where 2 is a discretized temporal 
variable. Figure l ( b )  shows a typical SZ wave-form. Tables 1 and 2 give the 
parameters of the three experiments and the results of five numerical computa- 
tions. In  referring to entries in tables we will use the notation A : X for table A ,  
row X and A : X ,  Y for table A ,  row X, column Y .  The columns are, of course, the 
labels for the cases considered. 

Now we justify the use of periodic boundary conditions (2.8) to describe the 
evolution of waves propagating past two separated stations. Figure 2 shows a 
Clevite-Brush recording of the wave-form at S 2. As the wave passes the probe, it 
produces a temporal signal that is translated into spatial form by the recorder. 
After about two periods, the wave-form remains nearly constant (less than 1 % 
variation at tallest crests from period-to-period) until the arrival of the weak 
signals reflected from the beach. The data at S 2, compared with the numerical 
solutions (as described below), are usually taken from period 2 or higher of a 
given recording. The number of raw data points in a period is shown in entries 
1 : 9 and 1 : 10, (Npl) for S 1 and (Np2) for S 2. For two of the three runs the periodi- 
city assumption holds 0.025%. Hence, if the two probes are separated by a 
‘proper’ distance X,, then time elapsed in the numerical computation t,, is 

tl, _” 4 2 1 C O .  (3.1) 

The ‘proper’ distance is chosen to be sufficiently large to observe the initial 
smooth wave-form develop its full complement of undulations (solitons-to-be), 
but also small enough that the leading ‘zero-crossing ’ (see figure 1 ( 6 ) )  does not 
propagate to the right into the preceding period. Entry 1 : 5 shows distances of 
about 20ft or 2.23 < (Xl2/L) < 2.43. The data will also bevalidated by examining 
how well (3.1) is satisfied. 
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(b) 
FIGURE 1. (a)  A schematic diagram illustrating a shallow-water wave tank driven by an 
oscillating piston and data recorded at  two properly separated stations. (b)  Typical undular 
wave-form recorded at  S 2. 

3.1. Xmoothing, computing and validating procedures 

Figure 3 illustrates how the data are smoothed and coupled to the KdV numerical 
algorithm for initialization and comparisons. Properties of the KdV algorithm 
have been given previously (Zabusky 1968) and are summarized briefly in 
appendix A. In  what follows we assume that unnormalized raw and smoothed 
data are dimensional. 

(i) The raw data, &(2) at S 1 and &(2) at S 2, are fitted with trigonometric 
functions using a conventional least-squares procedure. The Fourier cosine and 
sine amplitudes, A,, and Bik, (k > l), of N,, harmonics (i = 1 for S 1) and NH2 
(i = 2 for S2)  harmonics, are computed to adequately represent the data. 
Entries 1 : 9 and 1 : 10 show that between 6 and 8 harmonics were used to represent 
S 1 data, and between 14 and 20 harmonics were used to represent S 2 data. 

(ii) The unnormalized zero-mean input and test functions h,(x,) and Fy2(xm) 
are computed at  2M points 1 < xm < 2M in a period using N,, amplitudes 
obtained in the previous step. Entry 1 : 19 gives the value of 2M. We usually took 
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M < Npi/5, depending upon the resolution required. Entries 1 : 11 and 1 : 12 give 
the normalized mean-square content of a period, where 

and h,, = max%hl(xm) - h,. (3.3) 

E&, and E2z/h:l, given in entries 1: 13 and 1: 14, are the normalized square 
content of the highest harmonic used and give one an estimate of the error made 
in omitting the last harmonic. For example, in column 5 ,  where N,, = 6, the 
fraction of energy in the sixth harmonic is 2.2 x lo-* of the total energy, El. 

Case 1 2 3 4 5 

(1) ho(ft) 0.493 0.242 0.242 0.493 0.242 
(2) L(ft) 7.92 8.38 9.46 7.92 8.38 
(3) c,(ft/sec) 3.98 2.79 2.79 3.98 2.79 
(4) T (sec) 1.99 3.00 3.39 1.99 3.00 
(5) S,,(ft) 19.2 18.7 21.2 19.2 18.7 
(6) h,,(ft) 0-0418 0.0192 0.0243 0.0418 0.0192 
(7) S,,/L 2.43 2-23 2.24 2.43 2.23 
(8) h,,/ho 0.0848 0.0793 0.1004 0.0848 0.0793 
(9) N p l / N H 1  39218 58416 66318 39217 58416 

(lo) NPZ/NH2 392/15 582116 664120 392114 582115 
(11) Ellh;, 0.4423 0.4679 0.4334 0.4423 0.4679 
(12) E,/hZl 0.3784 0.4087 0.3908 0.3784 0.4087 
(13) El,/h?, 0.83 x 0.51 x 0.47 x 0.45 x lop5 0.10 x 

(14) E,,/h:l 0.29 x lo-' 0.68 x 0.50 x 0.41 x lop6 0.13 x lo-'' 
(15) (AE), 5.9 3.6 4.4 5.9 5.6 
(16) Uro 21.95 481.6 777.0 21.95 481.6 
(17) 8: 0.02025 0-004672 0.002896 0.02025 0.004672 
(18) a2 0.02025 0.004672 0.002896 0.0229 0.004043 

(20) At (msec) 0.282 0.671 0.443 0.772 0.505 
(21) Nco 17,125 9,943 17,165 6,240 13,235 
(22) N ,  19,978 10,069 15,814 7,009 12,232 

(19) 2M 140 200 260 100 220 

TABLE 1. Parameters describing experiment and computation 

Note that in all cases E2/h;l < E,/hE, indicating that energy has been lost. 

(3.4) 

is given in entry 1 : 15. This observed energy loss of between 10 % and 15 Yo in less 
than 2+ periods is not described by the KdV equation and accounts mostly for 
the small amplitude discrepancies we observe in comparing measured and 
computed results in Q 4. 

The normalized energy lost per period, 

(AE), = (100 %) (1  -E2/-w(42/L), 

(iii) The data are now normalized: 

h(xrn) = hl(xmIP11, (3.5) 

&2(zrn) = h2(xm)/h11 (3.6) 
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Case 1 2 3 4 5 
(1) UrLl 21.95 481.6 777.0 21.95 481.6 
(2) 802 0.02025 0.004672 0.002896 0.02025 0.004672 
(3) a2 0.02025 0.004672 0.002896 0.0229 0.004043 
(4) a ( t c ) / Y 1  0.0035 0.0040 0.0068 0.006 0.0095 
( 5 )  SClL 2.83 2.26 2.06 2.73 2.06 
(6) ( ~ 1 2 - ~ c ) / ~ 1 2  0.166 0.0134 - 0.0788 0- 123 - 0.076 

- - - - - r - - - 4 - 7 - - - - - ~ c - ) c - 7  
(S 2) Data KdV Data KdV Data KdV Data KdV Data KdV 

(7) hllhll 1.40 1.51 1.75 1.96 1.89 2.10 1.40 1.44 1.75 2.04 
-0.31 -0.35 0.69 0.64 0.79 0.87 -0.31 -0.42 0.69 0.73 
- - -0.11 -0.14 0.067 0.097 - - -0.1 -0.053 

(8) h2PlI 
(') ' 3 l h l 1  

(10) a1lh1, 1.83 2.21 2.46 2.74 2.60 2.84 1.83 1.99 2.46 2.83 
(11) a2lh11 0.23 0.10 0.78 0.71 0.90 1.12 0.23 0.11 0.78 0.88 

(13) L T C / L  0.30 0.30 0.20 0.19 0.17 0.17 0.31 0.32 0.20 0.18 
0.50 0.55 0.23 0-23 0.21 0.21 0.50 0.51 0.24 0.23 

- 0.45 0.44 0.43 0.40 - - 0.45 0.44 
0.47 0.39 0.33 0-31 0.27 0.27 0.40 0.36 0.33 0-30 

- 0.58 0.60 0.49 0.49 - - 0.57 0.55 

0.10 0.062 - - 0.10 0.004 0.24 0.17 - - (12) %lhll 

(14) L1,P 
(15) L,IL 
(16) h2/L 
(17) 4, 

- 

- 
(18) 1/2M 0.0071 0.0071 0.005 0.005 0.0038 0.0038 0.01 0.01 0.0045 0.0045 

TBLE 2. Parameters describing experiment and computation 

52 

s2 

s 1  

FIGURE 2. Analog recording of S 1 and S 2 wave-forms for case 3, table 1, 
where Ur,, = 777. 

F L M  47 
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and (3.5) is used as the initial condition for the KdV algorithm. The dispersion 
parameter for the runs is taken as either 

or some value 6, (entry 1 : 18 or 2 : 3) near 8;. 
(iv) As time evolves a function kK(xm) is computed. The normalized S 2  

function &(x,) is displaced discreteZy, until its maximum coexists with the 
maximum of k,(x,, t ) ,  and an error function is computed 

13; = 4h$/9hll L2 (3.7) 

2M 

m = l  
44%) = (2W-l  z [Mx,, t,) - 52(% - x,)I2, (3.8) 

where x, is determined such that (3.9) has a minimum 

FIGURE 3. Flow chart for smoothing, numerical computing, 
and validating procedures. 

Because of this discreteness, s(t,) will be discontinuous in time. The magnitude 
of the discontinuity is made smaller with M larger. 

The wave-form is printed out, together with the value of e(t,)/h?l. The time t, 
is designated, where E has a minimum (entry 2:4). We define 

8, = cote, (3.10) 

and S,/L is compared to S,,/L in entry 2: 6. 
The number of computation steps to t, is N, = t ,/(At), where 

At = &T(L2/M3hg). (3.11) 

4. Comparisons : Experiment and computation 
The data in tables 1 and 2 are for three different experimental Ursell numbers, 

entry 1 : 16 or 2 : 1. Cases 1 , 2  and 3 take 62 = 8;. Cases 4 and 5 have the same data 
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as cases 1 and 2, respectively, but S2 $. a$. We discuss below the effect of errors in 
measurement of hll, h, and L and therefore in the calculation of S2. 

Remember figure 3 (the flow of information) and figure 1 ( b )  (the definitions of 
the wave-form parameters) ! These are the essence of the comparisons, shown in 
the lower part of table 2. Our comparisons are made in two almost independent 
ways. We set up an a priori criterion that the computed wave-form n,(zm, t,) 
correspond to the measured wave-form fl,(x, - xs) at that time t, when the mean- 
square difference between g, and fl, is a minimum. Obviously, t,wilI vary slightly, 
if we vary parameters like NH1 or NH2, if we include a different criterion (say, 
minimize the absolute-value difference), or if we include a loss term on the right 

FIGURE 4. Case 3 wave-forms: above &(zm) and &(zm); below &(zm, t,), where t, cc 
S / L  = 1.98, 2-24, 2.55, 3.12. The zero level of each curve is indicated at  right. Caution: 
all graphs are plotted by the computer are normalized to unity. The actual amplitude scales 
are given at right. 

side of (2.6). We next compare the wave-form gK(zm, t,) with fl,(z,) by examining 
the normalized amplitudes: crests above S WL (h4/hll) and crest-to-trough dis- 
tances (ai/hlJ; and phases (or relative location of crests and troughs) in a period 
with respect t o  the leading crest. Normalized amplitudes are given in entries 
2: 7-2: 12 and normalized phase information in entries 2: 13-2: 17. Figure 1 (b)  
illustrates these normalized quantities. We discuss this information below. 

52-2 
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Figure 4 shows six wave-forms relevant to case 3. At the top, kl(xm) and k2(xm) 
are plotted, each normalized to unity (retraces of computer output), and actual 
amplitudes are given at right. Below, four values of gK(xm,tn) are given at  
normalized distances from S 1 of 1.98, 2.24, 2.55 and 3.12. The solid curve, 
S,/L = 2-24, corresponds to t, and compares adequately in amplitude and very 
favourably in phase with &(xm) above. Note that the four lower graphs are each 
normalized t o  unity with their zero lines displaced upward. The actual leading 
crest amplitudes are given at  right and the two smaller crests of the solid curve 
are also labelled. Note that the normalized amplitude of the leading soliton has a 
maximum value of 2.14 at SIL = 2.55 and then decreases. This results because 
the leading soliton is moving into the period ahead and interacting with the 
fourth crest. We see the well-known effect of the taller soliton decreasing in 
amplitude, and the smaller growing in amplitude, during a two soliton inter- 
action (Multer & Galvin 1967). 

0 M 2M 

Distance in one wavelength 

FIGURE 5. Trajectory of crests in a wave period. Case 3, Ur,, = 777. 

Figure 5 shows the computed trajectory of crests in a wave period. Concep- 
tually, the observer is translating along with the linear speed c,. At S/L = 2.55 a 
fourth crest develops. Its appearance is expected because of the inflexion point 
evident in the data in figure 4. 

Since the KdV numerical algorithm conserves the mean-square of the wave- 
form, that is 9M 

m = l  
z J?(xm,tn), 

or the ‘energy’, and the data do not, one expects and finds that the data ampli- 
tudes are smaller than the KdV amplitudes, entries 2:lO-2:12. The phases, 
entries 2: 13-2 : 18, have consistently smaller deviations. 
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As the Ursell number was increased, the normalized energy decay per period 
decreasedfrom 5.91 to 4-41 (entries 1 : 1 5 , l  and 1: 15,3); the error in the computed 
separation distance (entry 1 : 6) decreased, although not consistently; and the 
phase data (entries 2: 13-2: 18) showed an improvement as 8; increased. Also, 
the mean-square error, e(tc)/h;l (entry 2: 4), was always less than 0-7 % in cases 
I, 2 and 3, far better than the energy comparison. 

The trend of ~ ( t , ) / h ; ~  in comparison with (ASl2-ASC)/& (entry 2:6) shows e(tC) 
increasing and (S12 - Sc)/Xl, decreasing with increasing Ursell number. The good 
agreement in e(tc)/hl, at low Ur follows, because amplitudes are smaller (and the 

i U  

I 100 1000 

uro 

FIGURE 6. Normalized amplitude k,/h,, and a,/h,, and a,/h,, at S 2. A comparison of 
KdV solutions max,,,, t,) with data maxam &(zm, Z). a,@, @ refer t o  cases 1,2,  3 in 
tables 1 and 2. +-+, KdV; 0-0, data. 

wave-shape is not as undular). However, because of the lack of undular structure 
at low Ur the ~ ( t , )  curve has a broader minimum, thus increasing the possibility 
of error in S,. To quantify the statements one would have to make a more careful 
parametric study including dissipation. 

The phase information for case 3 is remarkably good, considering the above 
comments. Only the phase of the smallest crest, L13/L, had an error of 8.25 %. 
This is to be compared with the error associated with one lattice interval (1/2M) 
or 0.38 yo. 

Figure 6 summarizes some of the amplitude results contained in the tables for 
cases 1, 2 and 3. We see the decrease in amplitude discrepancy between KdV 
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solution3 and smoothed data as the Ursell number increases. The crossing of the 
a21hll curves indicates that we probably must include dissipation in our numerical 
model if we are to quantify these details. 

Case 4 shows that increasing S2 by 13 yo (compare case 1) decreases the error in 
S, (entry 2: 6) and greatly improves the amplitude and phase comparisons. It is 
possible to make a 15 yo error in d2 because of the hi in the numerator of (2 .7d ) .  

Case 5 shows that decreasing S2 by 14% (compare case 2) leads to a degradation 
in quality in X,, s(t,), amplitude and phase. 

5. Conclusions 
The Korteweg4eVries equation and the soliton concept can describe the 

slightly dissipative propagation-and-evolution of finite-amplitude shallow-water 
waves for Ursell numbers up to 800. As the dissipation becomes weaker, the 
detail in the comparison of data with KdV numerical solutions becomes better 
and holds for longer propagation distances. A laboratory-data/numerical- 
solution comparison of the number of crests and troughs and their phases (or 
relative locations within a period) shows only negligible difference. As one ex- 
pects, the crest-to-trough amplitudes differ somewhat more because they are more 
sensitive to dissipative forces. To quantify some of the details we recommend a 
study including dissipation. 

In some qualitative laboratory experiments we increased the Ursell number 
above 800, and observed the leading crest grow until its maximum sharpened into 
a near cusp, i.e. evolved into a maximum-amplitude soliton (analogous to the 
maximum-amplitude solitary wave). Upon increasing the Ursell number, the 
leading crest broke by radiating forward a burst of capillary waves. After the 
capillary waves subsided we were left with a stable propagating crest or soliton 
followed by its usual train of solitons of decreasing amplitude. 

The soliton concept validated here is essential for a terse description of a class 
of wave-breaking phenomena. 

We are grateful for numerous helpful conversations with G.S.Deem and 
F. Tappert (who also commented on the manuscript) and the programming 
assistance of J. W. Robinson and Mrs Carol Bateman Tretkoff. 

Appendix A. Korteweg-deVries numerical integration algorithm 
To advance &(i7j) we used a right-to-left sweeping iterative algorithm, as 

validated by Zabusky (1968). The algorithm employed four adjacent points 
(i + 2,  i + 1, i ,  i - 1) on two time-levels (j + l,j), 

E,(i,j+ 1) = ?&i+ 1,j)  - [K,(i + z 7 j +  1) -EK(i  - 1 , j ) ] / [ ( S 2 + P ) / ( 3 S 2 - . F ) ] ,  (A 1)  

where P = (h2/8) [K,(i+Z,j+ l ) + L & -  l,j)], (A 2 )  

k = h3/4S2. (A 3) 

h = lj2M is the lattice spacing and the time step is 
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At a particular time we begin to compute KK(2&f,j+ 1) using &&M+ l , j ) ,  
kE(2M- 1 , j )  and a tentative extrapolated value of &(2M+ 2,j+ 1). This 
extrapolated value is the reason for the iteration. We sweep to the left until we 
compute &(2,j + 1) and because of periodicity we also designate this 

&)(2M+2,j+ 1). 

p-(flg+l)(2N+2,j+ l ) ) / q p ( 2 M + 2 , j +  1)1 < E', 

We repeat this process until two successive sweeps differ by a small number, i.e. 

(A 4) 

where we took E' = l O W  for the GE-635 computer whose single precision arith- 
metic carries eight significant figures. The algorithm is second order in has seen by 
taking the continuous limit of (A 1). 

Appendix B. Summary of variables 
We summarize briefly the variables used in this paper. 
(i) The starred (*) variables represent ' exact ' (hypothetical) dimensional 

variables; for example, ht is the exact still-water level. However, h*(x*, t*) is the 
dimensional, fk-st-order asymptotic approximation to the true free surface 
height and is here assumed to be the exact solution of (2.1) with appropriate 
boundary conditions. Measured and smoothed dimensional quantities are 
unadorned, e.g. h,, L, h,,, etc. 

(ii) Figure 3 shows how the remaining variables are defined: 
&(a) are the dimensional, digitized, free surface data given at N,, equispaced 

h,(x) are the zero-mean, dimensional, smoothed data obtained by selecting the 

h&,) are the zero-mean, normalized data given at  2M equispaced intervals 

hK(z,,,, t,) are the numerical solutions of the KdV equation, with 

values of D for S 1 (i = 1) and N,, equispaced values of 2 for S 2 ( i  = 2). 

lowest NHi harmonics for the data at  S i and recomposing the function. 

(1 < x,,, < 2M), corresponding to fundamental period of 2.0. 

as an initial condition and periodic boundary conditions 

K K b ,  + 2, t,) = &&,,,, t,). 

(iii) Note that in figure l ( b )  the dimensional height of the crest above the 
still-water level is given as h,, h,, h3, etc. This is an abbreviated notation. If we 
are discussing smoothed data, the first crest is 

h,, a t  S 1, h,, a t  S2, etc. 

If we are comparing solutions to the equation with smoothed data then a more 
complete notation would have 

hokKl(tc) compared with h2,, h,K,,(t,) compared with h22, etc. 
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